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Ø Experiments to study pore level and 
petrophysical property changes in 
experiments of carbon dioxide and brine with 
different rock types

Ø Validation of models using experimental 
results

Ø Coupling of geomechanical models with flow

Objectives
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Experimental System

Core flooding system conditions
§ Core pressure: 2,000 psi
§ Confining pressure: 3,000 psi
§ Reaction temperature: 60 C
§ Reaction time :  14 days
§ Cores: sandstone, limestone, and dolomite
§ CO2 : Brine ratio: Variable
§ (1.5 inch diameter, 7 inch length)



Sandstone Effluent Analysis
Mineralogical changes: Effluent analysis using ICP-MS, sandstone
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Fe, Ca, and Mg concentrations peak and decrease

Slightly higher peaks at higher flow rates

Iron involvement observed by Carroll et al.(2012)



Limestone Effluent Results
Mineralogical changes: Effluent analysis using ICP-MS, limestone
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Significant changes with respect of Ca



Dolomite Effluent Results
Mineralogical changes: Effluent analysis using ICP-MS, dolomite
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Ca and Mg dissolution consistent with the mineralogical composition of dolomite



• Core flooding conducted at sequestration conditions shows effluent
peaks of key cations – Fe, Ca and Mg

• The level of iron dissolution in sandstone – even over short durations
was higher than expected – may have major implications in practical
sequestration scenarios

• Ankerite and siderite are the main iron bearing reactive minerals in
sandstone and they dissolve almost completely in the two-week
experiment

• In XRD spectra, differences were observed in sandstone, but not in
limestone or in dolomite

• Higher flow rates led to higher levels of mineral dissolutions

Effluent Analysis



Porosity Changes - Sandstone
Petrophysical changes: Porosity measurement using helium porosimeter, sandstone

Brine: Initially saturated
CO2: 1.41 ml/min

21.236 %

21.274 %

21.462 %

21.455 %

21.395 %

21.341 %

21.362 %

Brine: 1 ml/min
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Unreacted
Sandstone

Average 
porosity
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sandstone
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0.12 % 0.60 % 1.01%0.18 %Porosity changes:



Porosity changes:

Limestone Porosity Changes
Petrophysical changes: Porosity measurement using helium porosimeter, limestone
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Porosity changes:

Dolomite Porosity Changes
Petrophysical changes: Porosity measurement using helium porosimeter, dolomite

Brine:0.6 ml/min
CO2: 0.85 ml/min
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1.58 % 2.52 %0.42%



Permeability Changes
Petrophysical changes: Permeability calculation
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Micro-CT Imaging 
Petrophysical changes: Limestone core analysis using Micro-CT

Images of different sections of limestone core using Micro-CT Pre- (left, orange color) images and 
post (right, gray color) flooding experiments
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CO2: 0.71 ml/min



• Changes in porosity and permeability were quantified.

• Porosity changes were measured by helium porosimeter. In the sandstone,

limestone, and dolomite the porosity change ranged from 0.12 % to 1.01 %,

from 0.55 % to 2.79 %, and from 0.42 % to 2.52 %, respectively.

• In sandstone, permeability change ranged from 0.21 % to 1.43 %. Also

limestone and dolomite showed increase, from 1.06 % to 3.42 % and from

0.51 % to 2.41 %, respectively.

• Higher flow rates led to larger changes.

• Pore morphology changes were found in limestone using Micro-CT. At

lower flow rates beginnings of wormhole type structures were observed,

and higher flow rates fully developed wormhole was shown.

Summary of Petrophysical Changes



ToughReact Simulations
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Mineralogical changes: Comparison between experiment and simulation results

Good match of peak and trends for iron

Reactions of a few other minerals may be relevant



Petrophysical Changes
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Petrophysical changes: Porosity and permeability changes

Slightly larger changes at the inlet. Maximum amount is predicted to be 0.5 % and 1.4 % for

porosity and permeability, respectively. This is consistent with experimental data.

Figures show the comparison between pre-experiment and post-experiment values of porosity and 

permeability distribution in the core.



Core Flood Modeling Summary
• Trends and peaks of effluent ion concentrations (particularly,

Fe) were matched by the simulations.

• Simulations showed that ankerite dissolution was fast relative

to siderite leading to the characteristic iron effluent peak

observed in the experiments.

• Porosity and permeability changes predicted in the simulation

were reasonably close to the experimental values.



Batch reactor system conditions
§ Reaction pressure: 2,400 psi
§ Reaction temperature: 60 C
§ Reaction time: 14 days
§ Core samples: sandstone, limestone, and dolomite
§ (Powder, fractures, and 0.5 inch core plug)

Schematic diagram of the batch reactor system

Batch Reactors



Batch Systems – Main Results

Na
(mg/kg)

Mg
(mg/kg)

Al
(mg/kg)

Si
(mg/kg)

K
(mg/kg)

Ca
(mg/kg)

Fe
(mg/kg)

LOD 2 0.004 0.06 0.06 7 13 0.05

Core plug samples

Blank 7024 0.68 0.64 0.22 <7 <13 1.92

Sandstone 7108 60.2 27.2 3.8 72 154 126

Limestone 7024 24 2.43 1.16 64 571 0.08

Dolomite 7188 302 0.87 5.04 80 428 0.08

Fracture samples

Blank 7096 0.82 <0.06 0.25 <7 <13 1.14

Sandstone 7103 109 64.9 8.4 140 204 192.1

Limestone 7028 29 1.39 3.07 96 708 0.07

Dolomite 7097 444 0.15 2.37 137 543 0.08

Powder samples

Blank 7018 0.74 0.32 1.68 <7 <13 1.53

Sandstone 6904 167.2 98.5 17.2 211 384 271.44

Limestone 7103 28.4 1.32 2.32 163 1226 0.07

Dolomite 7062 705 0.36 8.46 190 960 0.06

Mineralogy changes with different surface area: Effluent analysis using ICP-MS

Table 7. ICP-MS results for core plug, fractured core, and powdered core after two week

Enhanced changes are observed as we go from core plugs to fracture samples to powders



Limestone – QEM Scan
Mineralogical changes: Limestone core plug analysis using QEMSCAN

Background area increased
From 14.58% to 23.54%

Widespread dissolution including internally



Limestone – Micro CT 
Petrophysical changes: Limestone core plug analysis using Micro-CT

- The cross sectional 2D images the pore 

morphology change is easily recognized

- The 3D solid image there are many pore 

changes on the surface of the core plug

- The 3D negative image is cloudier after the 

batch experiment reaction



Batch Reactor Observations
• Mineral dissolution caused the growth and expansion of pores in all mineralogies.

• The 2D cross section Micro-CT results showed pore expansion within the sandstone

and limestone core plugs.

• The 3D solid images showed pore changes on the surface of sandstone, limestone,

and dolomite. The 3D negative images displayed removed particles and increased

porosity.

• Surface area changes were measured by BET instruments. Increased surface area in

sandstone, limestone, and dolomite ranged from 24.30 % to 35.47 %, 9.98 % to

19.58 %, and 7.45 % to 40.94 %, respectively.



Experimental Conclusions
q Mineralogical changes after two weeks of injection have the potential to cause

significant petrophysical and subsequent structural changes in sandstone, limestone

and dolomite formations under carbon dioxide sequestration conditions. This was the

original hypothesis that was validated using high-pressure core floods in this work.

q Iron chemistry plays an unexpectedly larger role in sequestration in sandstone

formations. Dissolution of ankerite and siderite lead to large iron effluent

concentrations. A reactive transport model such as TOUGHREACT may be used to

explain the complex interconnected reactions with flow. However, some of the flow

rate effects observed in the experiments could not be reproduced in the model.

q In limestone and dolomite, calcium and magnesium bearing minerals dissolve leading

to formation of large dissolution zones, including wormholes.



Conclusions (continued)
q Porosity and permeability changes are small – of the order of 1-2% and similar values

result from TOUGHREACT.

q Batch experiments showed similar trends in iron in sandstones, and calcium and

magnesium in limestone and dolomite. As the surface areas increase by using rock

chips and then powders, reactivities increase leading to larger cationic concentrations

in brine.

q Approximate morphology of the reacted volume is viewed using QEMSCAN and

Micro-CT for batch samples. Reactions appear to be uniform throughout the volume

for limestone and dolomite, whereas they appear to be limited more to the surface in

sandstone.



Method: Coupling DEM with Conjugate Network 
Flow Model (INL)

qij =
k0 ⋅Aij
µ

(Pi −Pj )
lij

Prior  to  fracturing After  fracturing

qij =
kij ⋅bij
µ

(Pi −Pj )
lij

,     with kij ≈ bij
2 /12

• Directly  calculate  apertures  of  micro-fractures;;

• Apertures  are  used  to  as  direct  input  for  updating  permeability  
of  the  flow  network

• More  PHYSICS-based  hydraulic  fracturing  model



Mechanistic modeling of reactivations of natural fractures near 
injection wellbore due to CO2 injection

• Cemented wellbore with open injection 

interval

• Vertical stress ~10,000psi with H/V ratio of 

0.5

• Densely fractured reservoir

• Natural fractures are assumed to be 

mechanically closed

• Natural fractures have initial permeability 

of ~1.4x10-12m2

• The reservoir matrix permeability is low,~ 

1.4x10-19m2



Simulations on stress and permeability changes

Fluid pressure distribution shortly after the 
injection was started 

Horizontal displacement field and fracture network 
colored by fracture permeability 

Fluid pressure distribution after flow reached 
steady-state

Horizontal displacement field and fracture network 
colored by fracture permeability 



Shear slipping vs. opening?

Displacement vector fields



Geomechanics Conclusions

Ø DEM geomechanics model - a robust for either 
fractured or not-fractured reservoir

Ø Most natural fractures are filled with secondary 
minerals, and have certain tensile and shear 
strengths: DEM accounts for such effects in 
dealing with natural fractures

Ø We see dilational opening of fractures rather than 
shear failures. 

Ø Geochemical reactions such as mineral 
dissolution/precipitation weaken mechanical 
strength natural fractures, leading to reactivation 
of fractures



Ø Wrapping up with more data analysis on 
reaction rates and surface area

Ø Field implications
Ø Use of experimentally obtained parameters in 

INL simulations

Project Status


